skip to main content


Search for: All records

Creators/Authors contains: "Baer, Steven E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Concentrations and elemental ratios of suspended particulate organic matter influence many biogeochemical processes in the ocean, including patterns of phytoplankton nutrient limitation and links between carbon, nitrogen and phosphorus cycles. Here we present direct measurements of cellular nutrient content and stoichiometric ratios for discrete phytoplankton populations spanning broad environmental conditions across several ocean basins. Median cellular carbon-to-phosphorus and nitrogen-to-phosphorus ratios were positively correlated with vertical nitrate-to-phosphate flux for all phytoplankton groups and were consistently higher for cyanobacteria than eukaryotes. Light and temperature were inconsistent predictors of stoichiometric ratios. Across nutrient-rich and phosphorus-stressed biomes in the North Atlantic, but not in the nitrogen-stressed tropical North Pacific, we find that a combination of taxonomic composition and environmental acclimation best predict bulk particulate organic matter composition. Our findings demonstrate the central role of plankton biodiversity and plasticity in controlling linkages between ocean nutrient and carbon cycles in some regions.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Variation in ocean C:N:P of particulate organic matter (POM) has led to competing hypotheses for the underlying drivers. Each hypothesis predicts C:N:P equally well due to regional co-variance in environmental conditions and biodiversity. The Indian Ocean offers a unique positive temperature and nutrient supply relationship to test these hypotheses. Here we show how elemental concentrations and ratios vary over daily and regional scales. POM concentrations were lowest in the southern gyre, elevated across the equator, and peaked in the Bay of Bengal. Elemental ratios were highest in the gyre, but approached Redfield proportions northwards. AsProchlorococcusdominated the phytoplankton community, biodiversity changes could not explain the elemental variation. Instead, our data supports the nutrient supply hypothesis. Finally, gyre dissolved iron concentrations suggest extensive iron stress, leading to depressed ratios compared to other gyres. We propose a model whereby differences in iron supply and N2-fixation influence C:N:P levels across ocean gyres.

     
    more » « less
  4. Abstract

    The globally abundant marine Cyanobacteria Prochlorococcus and Synechococcus share many physiological traits but presumably have different evolutionary histories and associated phylogeography. In Prochlorococcus, there is a clear phylogenetic hierarchy of ecotypes, whereas multiple Synechococcus clades have overlapping physiologies and environmental distributions. However, microbial traits are associated with different phylogenetic depths. Using this principle, we reclassified diversity at different phylogenetic levels and compared the phylogeography. We sequenced the genetic diversity of Prochlorococcus and Synechococcus from 339 samples across the tropical Pacific Ocean and North Atlantic Ocean using a highly variable phylogenetic marker gene (rpoC1). We observed clear parallel niche distributions of ecotypes leading to high Pianka’s Index values driven by distinct shifts at two transition points. The first transition point at 6°N distinguished ecotypes adapted to warm waters but separated by macronutrient content. At 39°N, ecotypes adapted to warm, low macronutrient vs. colder, high macronutrient waters shifted. Finally, we detected parallel vertical and regional single-nucleotide polymorphism microdiversity within clades from both Prochlorococcus and Synechococcus, suggesting uniquely adapted populations at very specific depths, as well as between the Atlantic and Pacific Oceans. Overall, this study demonstrates that Prochlorococcus and Synechococcus have shared phylogenetic organization of traits and associated phylogeography.

     
    more » « less
  5. Abstract

    While the majority of studies use the environment to describe microbial populations, the high diversity of microbes can conversely be used as a resource to understand subtle environmental variability. Here, we used a high‐resolution spatial and temporal analysis ofProchlorococcussp. in the Eastern Indian Ocean to determine whether ecotypes and microdiverse taxa can be used to identify fine‐scale biogeochemical regimes in this under‐studied region. A total of 246 DNA samples were collected every 4–6 h in April 2016 on GO‐SHIP cruise I09N, which transected gyre, equatorial, and monsoonal ecosystems between Western Australia and the Bay of Bengal. Using amplicon sequencing of the highly variablerpoC1 marker, we found that the region was largely dominated by theProchlorococcusHL‐II clade. Conserved single nucleotide polymorphisms (SNPs) were used to identify four microdiverse haplotypes, or SNP‐delineated taxa, within the HL‐II clade ofProchlorococcus. The haplotypes showed regional patterns of relative gene count abundance that were significantly correlated with environmental conditions. Additionally, we used nonlinear least squares models to fit the sine wave function to our data and demonstrate that the haplotypes show distinct patterns in relative diel frequency, providing evidence that these microdiverse populations are ecologically and evolutionarily distinct. Overall, we show how the integration of a genomics data set into a biogeochemical framework can reveal a more nuanced understanding of a complex ocean basin.

     
    more » « less